ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Петербургский государственный университет путей сообщения Императора Александра I» (ФГБОУ ВО ПГУПС)

Кафедра «Вагоны и вагонное хозяйство»

РАБОЧАЯ ПРОГРАММА

дисциплины
Б1.В.6 «ОСНОВЫ МЕХАНИКИ ПОДВИЖНОГО СОСТАВА»
для специальности
23.05.03 «Подвижной состав железных дорог»

специализации «Грузовые вагоны»

Форма обучения – очная, заочная

Санкт-Петербург 2023

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа рассмотрена, обсуждена на заседании кафедры «Вагоны и вагонное хозяйство» Протокол № 9 от «12» апреля 2023 г.

Заведующий кафедрой «Вагоны и вагонное хозяйство»

«<u>12</u>» <u>апреля</u> 2023 г.

СОГЛАСОВАНО

Руководитель ОПОП

«<u>12</u>» <u>апреля</u> 2023 г.

Ю.П. Бороненко

Ю.П. Бороненко

1. Цели и задачи дисциплины

Рабочая программа дисциплины «Основы механики подвижного состава» (Б1.В.6) (далее – дисциплина) составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования – специалитет по специальности 23.05.03 «Подвижной состав железных дорог» (далее - ФГОС ВО), утвержденного «27»марта 2018 г., приказ Минобрнауки России № 215, с учетом профессиональных 17.055.Профессиональный стандартов: образовательный «Специалист по организации и производству технического обслуживания и ремонта железнодорожного подвижного состава» утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 19 апреля 2021 года №252Н (зарегистрирован Министерством юстиции Российской Федерации, регистрационный **№**1099) И 17.076. Профессиональный стандарт «Руководитель подразделения организации железнодорожного транспорта» утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 27 апреля 2023 года №364Н (зарегистрирован Министерством юстиции Российской Федерации 29 мая 2023 года, регистрационный №73559).

Целью изучения дисциплины является приобретение знаний в области проектно-конструкторской и научно-исследовательской деятельности на основе изучения современных методов расчета прочности и устойчивости несущих конструкций вагонов при различных типах нагружения, расчета динамических показателей вагонов и анализа безопасности от схода колес с рельсов, расчета динамической нагруженности несущих конструкций вагонов с использованием компьютерных технологий.

Для достижения цели дисциплины решаются следующие задачи:

- ознакомление с основными положениями теории упругости и теории колебаний, применяемыми для расчета вагонов;
- применение современных компьютерных технологий для численного моделирования движения вагона, численного решения задач прочности и устойчивости сжатых конструкций;
- сопоставление результатов расчетов с существующей нормативной базой по требованиям к прочности и динамическим качествам.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Планируемыми результатами обучения по дисциплине (модулю) является формирование у обучающихся компетенций и/или части компетенций. Сформированность компетенций и/или части компетенций оценивается с помощью индикаторов достижения компетенций приведенных в таблице 2.1

В рамках изучения дисциплины (модуля) осуществляется практическая подготовка обучающихся к будущей профессиональной деятельности. Результатом обучения по дисциплине является формирования у обучающихся практических навыков:

- расчетов вагонов и их узлов;
- эксплуатации грузовых вагонов и их узлов;
- оценки технического состояния вагонов и их узлов.

Таблица 2.1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в программе специалитета индикаторами достижения компетенций

Индикаторы достижения компетенций	Результаты обучения по дисциплине		
ПК-4: Планирование мероприятий по реализации технической политики подразделено организации железнодорожного транспорта			
ПК-4.1.7 Знает устройство, назначение и правила технической эксплуатации технологического оборудования и инженерных сетей железнодорожного подвижного состава, устройств и оборудования железнодорожной инфраструктуры подразделений организации железнодорожного транспорта	Обучающийся знает устройство, назначение и правила технической эксплуатации железнодорожного подвижного состава, устройств и оборудования железнодорожной инфраструктуры в объеме, необходимом для выполнения должностных обязанностей		

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина относится к части, формируемой участниками образовательных отношений блока 1 «Дисциплины (модули)» и является обязательной дисциплиной.

4. Объем дисциплины и виды учебной работы

Для очной формы обучения:

Таблица 4.1.

Dur vyohyoğ nahozy v	Всего часов	Семестр	
Вид учебной работы	всего часов	5	6
Контактная работа (по видам учебных	106	64	42
занятий)			
В том числе:			
– лекции (Л)	46	32	14
 практические занятия (ПЗ) 	30	16	14
– лабораторные работы (ЛР)	30	16	14
Самостоятельная работа (СРС) (всего)	98	44	62
Контроль	40	36	4
Форма контроля (промежуточной		Э	э ип
аттестации)		<i>-</i>	3,КП
Общая трудоемкость: час / з.е.	252/7	144/4	108/3

Для заочной формы обучения:

Таблица 4.2.

Вид учебной работы	Всего часов	Курс 4
Контактная работа (по видам учебных занятий)	28	28
В том числе: – лекции (Л) – практические занятия (ПЗ) – лабораторные работы (ЛР)	12 8 8	12 8 8
Самостоятельная работа (СРС) (всего)	211	211
Контроль	13	13
Форма контроля (промежуточной аттестации)		Э,3,КП
Общая трудоемкость: час / з.е.	252/7	252/7

Примечания: «Форма контроля знаний» — экзамен (Э), зачет (З), курсовой проект (КП).

5. Структура и содержание дисциплины

5.1. Разделы дисциплины и содержание рассматриваемых вопросов Для очной формы обучения:

Таблица 5.1.

№ п/п	Наименование раздела дисциплины	Содержание раздела	Индикаторы достижения компетенций
1	Общие сведения по динамике подвижного состава	Лекция 1 Динамика вагонов, как составная часть науки о механике вагона, определяющая уровень динамических воздействий на элементы конструкции, устанавливающая качественные и количественные показатели, характеризующие безопасность его движения. Лекция 2 Элементы классической механики, используемые в задачах моделирования динамики вагонов. Общая структура моделирующих дифференциальных уравнений, методы их анализа. Входные параметры и выходные величины математических моделей.	ПК-4.1.7
2		Лекция 3 Общие сведения о факторах, способствующих возникновению колебаний вагонов. Характеристики вагонов, обуславливающие колебательные движения его деталей и узлов. Путь и его характеристики, влияющие на динамические процессы вагонов. Лекция 4 Общая характеристика систем	ПК-4.1.7
		рессорного подвешивания. Лекция 5 Виды колебаний вагона в заданной системе координат. Расчетные схемы вагона, основанные на различных допущениях.	ПК-4.1.7
	Колебания вагона на рессорном	Лекция 6 Собственные колебания кузова на рессорах с линейными упругими элементами без трения в подвешивании, с гасителем колебаний вязкого трения.	ПК-4.1.7
	подвешивании	Лекция 7 Собственные частоты, собственные формы колебаний вагона как динамической системы. Разложение вынужденных колебаний в ряд по собственным формам.	ПК-4.1.7
		Лекция 8 Вынужденные колебания вагона на рессорах с линейными упругими элементами без трения в подвешивании, с гасителем колебаний вязкого трения. Коэффициент динамической добавки, его зависимость от жесткости подвешивания и гашения колебаний. Критерии для оценки показателей динамических качеств вагона и их нормативные значения.	ПК-4.1.7
		Лекция 9 Динамические силы, возникающие при движении вагона и действующие на его несущие	ПК-4.1.7

		усметруници Собетомический политический	
		конструкции. Собственные и вынужденные	
		колебания упругих тел под действием	
		динамической нагрузки. Изгибные колебания балок.	
			ПК-4.1.7
		Лабораторная работа 1. Разработка	11N-4.1./
		математической модели вертикальных колебаний	
		кузова вагона на одноступенчатом рессорном	
		подвешивании с гасителем колебаний вязкого	
		трения. Исследование свободных и вынужденных	
		колебаний, прогибов подвешивания, влияния жесткости подвешивания, коэффициента вязкого	
			ПК-4.1.7
		трения, массы кузова на интенсивность колебаний.	11N-4.1./
		Лабораторная работа 2. Разработка	
		математической модели вертикальных колебаний	
		кузова вагона на одноступенчатом рессорном	
		подвешивании с гасителем колебаний сухого	
		трения (сила зависит от загрузки вагона).	
		Исследование свободных и вынужденных	
		колебаний, прогибов подвешивания, влияния	
		жесткости подвешивания, коэффициента	
		относительного трения, массы кузова на интенсивность колебаний.	
			ПК-4.1.7
		Лабораторная работа 3. Разработка математической модели колебаний кузова вагона в	11N-4.1./
		вертикально-поперечной плоскости. Исследование	
		частот и форм собственных колебаний.	
		частот и форм сооственных колеоании.	
		Практическое занятие 1. Измерение упругих	ПК-4.1.7
		характеристик пружин подвешивания.	1110-4.1.7
		ларактеристик пружин подвешивания.	
		Практическое занятие 2. Измерение	ПК-4.1.7
		демпфирующих характеристик гидравлических	1111 11117
		гасителей колебаний.	
		Практическое занятие 3. Измерение	
		характеристик подвешивания тележки (18-9855),	ПК-4.1.7
		установленной на стенде.	
3		Лекция 10 Извилистое движение одиночной	ПК-4.1.7
		колесной пары. Движение колесной пары со	
		скольжением колес по рельсам. Зависимости,	
		определяющие силы в контактном пятне колеса и	
		рельса – силы крипа.	
		Лекция 11 Устойчивость колес против схода с	ПК-4.1.7
	Колебания	рельсов. Критерий Надаля.	
	1	Лабораторная работа 4. Разработка	ПК-4.1.7
	при движении по	математической модели качения колесной пары (с	
	рельсам	упругой связью с отсчетной системой координат)	
		по рельсовому пути. Исследование влияния	
		эквивалентной конусности, статической осевой	
		нагрузки на устойчивость движения.	
		Практическое занятие 4. Тензометрическая	ПК-4.1.7
		колесная пара для измерения сил, действующих в	
		контакте колеса и рельса	
4	Колебания	Лекция 12 Динамические силы, возникающие при	ПК-4.1.7
	вагонов,	маневровой работе и прохождении сортировочных	
		A A A A A A A A A A A A A A A A A A A	

	вызванные	горок.	
	действием продольных сил в поезде и при сортировке	Лекция 13 Динамические силы, возникающие при установившихся и переходных режимах движения поезда.	ПК-4.1.7
		Лекция 14 Поперечная устойчивость вагона на рессорах. Устойчивость вагона против опрокидывания при движении по кривым.	ПК-4.1.7
		Лабораторная работа 5. Разработка математической модели сцепа из трех вагонов в поезде с возможностью колебаний в продольном, поперечном и вертикальном направлении. Исследование колебаний, возникающих при соударении с препятствием	ПК-4.1.7
		Практическое занятие 5. Колебания вагона, измерение динамических сил, ускорений, напряжений при соударении вагона на стенде	ПК-4.1.7
5		горка. Обработка результатов Лекция 15. Понятие о напряжениях в точке тела. Главные напряжения. Основные положения и уравнения теории упругости. Уравнения Ламе.	ПК-4.1.7
	Общие сведения из теории упругости.	упругости: у равнения ламе. Лекция 16.Определение эквивалентных напряжений (теории прочности). Нормативные документы в области оценки прочности несущих конструкций вагонов.	ПК-4.1.7
6		Лекция 17 . Прикладные задачи теории упругости. Растяжение и сжатие. Задача Ламе. Кручение, изгиб. Напряжения в зонах геометрических	ПК-4.1.7
	Основные задачи теории упругости, виды напряженно-	концентраторов. Лекция 18. Расчет устойчивости сжатых конструкций. Расчет собственных частот и форм колебаний упругих систем.	ПК-4.1.7
	деформированного состояния	Практическое занятие 6. Расчет конструкций вагонов с использованием стержневых конечно-элементных моделей.	ПК-4.1.7
		Практическое занятие 7. Моделирование стержней переменного сечения.	ПК-4.1.7
7	Основы метода конечных элементов для	Лекция 19. Метод конечных элементов. Стержневые и балочные конечные элементы. Пластинчатые и оболочечные конечные элементы. Объемные конечные элементы. Свойства материалов. Граничные условия (кинематические и силовые). Практическое занятие 8. Расчет конструкций	ПК-4.1.7
	решения задач теории упругости	вагонов с использованием пластинчато- стержневых конечно-элементных моделей. Многослойные пластины	ПК-4.1.7

		Практическое занятие 9. Расчет конструкций	ПК-4.1.7
		вагонов с использованием объемных конечно-	
		элементных моделей	
8		Лекция 20. Расчет конструкций вагонов с использованием стержневых конечно-элементных моделей. Моделирование стержней переменного сечения	ПК-4.1.7
		Лекция 21 Расчет конструкций вагонов с использованием пластинчато-стержневых конечно-элементных моделей. Многослойные пластины. Расчет котла цистерны на прочность с использованием пластинчато-стрежневой конечно-элементной модели Лекция 22. Расчет конструкций вагонов с	ПК-4.1.7
	Решение задач расчета вагонов с использованием	использованием объемных конечно-элементных моделей. Расчет конструкций вагонов с использованием объемных конечно-элементных моделей в пакете прикладных программ ANSYSWORKBENCH. Расчет устойчивости сжатых элементов. Расчет устойчивости котла цистерны. Расчет собственных частот и форм колебаний упругих систем Лабораторная работа 6. Расчет котла цистерны на	ПК-4.1.7
	метода конечных элементов	прочность с использованием пластинчато- стрежневой конечно-элементной модели.	ПК-4.1.7
		Лабораторная работа 7. Расчет витых цилиндрических пружин с использованием объемных конечно-элементных моделей в пакете прикладных программ ANSYSWORKBENCH	ПК-4.1.7
		Лабораторная работа 8 . Расчет устойчивости сжатых элементов. Расчет устойчивости котла цистерны.	ПК-4.1.7
		Лабораторная работа 9. Расчет собственных частот и форм колебаний упругих систем	ПК-4.1.7

Для заочной формы обучения: Таблица 5.2.

№ п/п	Наименование раздела	Содержание раздела	Индикаторы достижения
11, 11	дисциплины		компетенций
1		Лекция 1 Динамика вагонов, как составная часть	ПК-4.1.7
	Общие сведения по	науки о механике вагона, определяющая уровень	
	динамике	динамических воздействий на элементы	
	подвижного состава	конструкции, устанавливающая качественные и	
		количественные показатели, характеризующие	

		безопасность его движения. Элементы	
		классической механики, используемые в задачах моделирования динамики вагонов. Общая структура моделирующих дифференциальных уравнений, методы их анализа. Входные параметры	
		и выходные величины математических моделей.	
на	олебания вагона рессорном двешивании	уравнений, методы их анализа. Входные параметры	ПК-4.1.7 ПК-4.1.7 ПК-4.1.7

	<u> </u>	Пиолитического	ПК 4 1 7
		Практическое занятие 2. Измерение демпфирующих характеристик гидравлических гасителей колебаний.	ПК-4.1.7
		Практическое занятие 3. Измерение характеристик подвешивания тележки (18-9855), установленной на стенде.	ПК-4.1.7
3	Колебания колесной пары при движении по рельсам	Лекция 3 Извилистое движение одиночной колесной пары. Движение колесной пары со скольжением колес по рельсам. Зависимости, определяющие силы в контактном пятне колеса и рельса — силы крипа. Устойчивость колес против схода с рельсов. Критерий Надаля. Лабораторная работа 4. Разработка математической модели качения колесной пары (с упругой связью с отсчетной системой координат) по рельсовому пути. Исследование влияния эквивалентной конусности, статической осевой нагрузки на устойчивость движения. Практическое занятие 4. Тензометрическая	ПК-4.1.7 ПК-4.1.7
		колесная пара для измерения сил, действующих в контакте колеса и рельса	1110
4	Колебания вагонов, вызванные действием продольных сил в поезде и при сортировке	Лекция 4 Динамические силы, возникающие при маневровой работе и прохождении сортировочных горок. Динамические силы, возникающие при установившихся и переходных режимах движения поезда. Поперечная устойчивость вагона на рессорах. Устойчивость вагона против опрокидывания при движении по кривым. Разработка математической модели сцепа из трех вагонов в поезде с возможностью колебаний в продольном, поперечном и вертикальном направлении. Исследование колебаний, возникающих при соударении с препятствием Лабораторная работа 5. Разработка математической модели сцепа из трех вагонов в поезде с возможностью колебаний в продольном, поперечном и вертикальном направлении. Исследование колебаний, возникающих при соударении с препятствием Практическое занятие 5. Колебания вагона, измерение динамических сил, ускорений, напряжений при соударении вагона на стенде горка. Обработка результатов	ПК-4.1.7 ПК-4.1.7
5	Общие сведения из теории упругости.	Лекция 5. Понятие о напряжениях в точке тела. Главные напряжения. Основные положения и уравнения теории упругости. Уравнения Ламе. Определение эквивалентных напряжений (теории прочности). Нормативные документы в области оценки прочности несущих конструкций вагонов.	ПК-4.1.7
6	Основные задачи теории упругости, виды напряженно-	Лекция 6. Прикладные задачи теории упругости. Растяжение и сжатие. Задача Ламе. Кручение,	ПК-4.1.7

	деформированного состояния	изгиб. Напряжения в зонах геометрических концентраторов. Расчет устойчивости сжатых конструкций. Расчет собственных частот и форм колебаний упругих систем. Практическое занятие 6. Расчет конструкций вагонов с использованием стержневых конечно-элементных моделей.	ПК-4.1.7
		Практическое занятие 7. Моделирование стержней переменного сечения.	ПК-4.1.7
7	Основы метода конечных элементов для решения задач	Лекция 3. Метод конечных элементов. Стержневые и балочные конечные элементы. Пластинчатые и оболочечные конечные элементы. Объемные конечные элементы. Свойства материалов. Граничные условия (кинематические и силовые). Практическое занятие 8. Расчет конструкций вагонов с использованием пластинчато-	ПК-4.1.7
8	теории упругости	стержневых конечно-элементных моделей. Многослойные пластины Практическое занятие 9. Расчет конструкций вагонов с использованием объемных конечно-элементных моделей Лекция 4. Расчет конструкций вагонов с	ПК-4.1.7
	Решение задач расчета вагонов с использованием метода конечных элементов	использованием стержневых конечно-элементных моделей. Моделирование стержней переменного сечения. Расчет конструкций вагонов с использованием пластинчато-стержневых конечно-элементных моделей. Многослойные пластины. Расчет котла цистерны на прочность с использованием пластинчато-стрежневой конечно-элементной модели. Расчет конструкций вагонов с использованием объемных конечно-элементных моделей. Расчет конструкций вагонов с использованием объемных конечно-элементных моделей в пакете прикладных программ ANSYSWORKBENCH. Расчет устойчивости сжатых элементов. Расчет устойчивости котла цистерны. Расчет собственных частот и форм колебаний упругих систем Лабораторная работа 6. Расчет котла цистерны на прочность с использованием пластинчато-стрежневой конечно-элементной модели. Лабораторная работа 7. Расчет витых цилиндрических пружин с использованием объемных конечно-элементных моделей в пакете прикладных программ ANSYSWORKBENCH Лабораторная работа 8. Расчет устойчивости сжатых элементов. Расчет устойчивости котла цистерны.	ПК-4.1.7 ПК-4.1.7 ПК-4.1.7

	Лабораторная работа 9. Расчет собственных	
	частот и форм колебаний упругих систем	ПК-4.1.7

5.2. Разделы дисциплины и виды занятий Для очной формы обучения:

Таблица 5.3.

No	Наименование раздела	П	по	пр	CDC	D
п/п	дисциплины	Л	П3	ЛР	CPC	Всего
1	2	3	4	5	6	7
1	Общие сведения по динамике подвижного состава	8	1	_	11	19
2	Колебания вагона на рессорном подвешивании	8	4	4	11	27
3	Колебания колесной пары при движении по рельсам	8	4	8	11	31
4	Колебания вагонов, вызванные действием продольных сил в поезде и при сортировке	8	8	4	11	31
5	Общие сведения из теории упругости.	2	1	-	15	17
6	Основные задачи теории упругости, виды напряженно- деформированного состояния	4	7	_	15	26
7	Основы метода конечных элементов для решения задач теории упругости	4	7	_	16	27
8	Решение задач расчета вагонов с использованием метода конечных элементов	4	_	14	16	34
	Итого					212
Контроль					40	
Всего (общая трудоемкость, час.)					252	

Для заочной формы обучения: Таблица 5.4.

1 аолица Э.т.						
№ п/п	Наименование раздела дисциплины	Л	П3	ЛР	CPC	Всего
1	2	3	4	5	6	7
1	Общие сведения по динамике подвижного состава	1	1	_	27	28
2	Колебания вагона на рессорном подвешивании	2	2		26	30
3	Колебания колесной пары при движении по рельсам	2	2	2	26	32
4	Колебания вагонов, вызванные действием продольных сил в поезде и при сортировке	2	1	2	26	31
5	Общие сведения из теории упругости.	1	_	-	27	28

6	Основные задачи теории упругости, виды напряженно-деформированного состояния	1	1	_	26	28
7	Основы метода конечных элементов для решения задач теории упругости	1	2	I	26	29
8	Решение задач расчета вагонов с использованием метода конечных элементов	2	_	4	27	33
	Итого					239
	Контроль					13
Всего (общая трудоемкость, час.)					252	

6. Оценочные материалы для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Оценочные материалы по дисциплине является неотъемлемой частью рабочей программы и представлен отдельным документом, рассмотренным на заседании кафедры и утвержденным заведующим кафедрой.

7. Методические указания для обучающихся по освоению дисциплины

Порядок изучения дисциплины следующий:

- 1. Освоение разделов дисциплины производится в порядке, приведенном в разделе 5 «Содержание и структура дисциплины». Обучающийся должен освоить все разделы дисциплины, используя методические материалы дисциплины, а также учебно-методическое обеспечение, приведенное в разделе 8 рабочей программы.
- 2. Для формирования компетенций обучающийся должен представить выполненные типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, предусмотренные текущим контролем успеваемости (см. оценочные средства по дисциплине).
- 3. По итогам текущего контроля успеваемости по дисциплине, обучающийся должен пройти промежуточную аттестацию (см. оценочные материалы по дисциплине).

8. Описание материально-технического и учебно-методического обеспечения, необходимого для реализации программы магистратуры по дисциплине

8.1. Помещения представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой специалитета, укомплектованные специализированной учебной мебелью и оснащенные оборудованием и техническими средствами обучения, служащими для представления учебной информации большой аудитории: настенным экраном (стационарным или переносным), маркерной доской и (или) меловой доской, мультимедийным проектором (стационарным или переносным).

Все помещения, используемые для проведения учебных занятий и самостоятельной работы, соответствуют действующим санитарным и противопожарным нормам и правилам.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Для проведения лабораторных работ используется лаборатория кафедры «Вагоны и вагонное хозяйство» оборудованная следующими приборами:

- Натурные макет тележки модели 18-9855;
- Стенд для измерения параметров рессорного подвешивания тележки модели 18-9855.
- 8.2. Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства:
 - операционная система Windows;
 - MS Office:
 - Программное обеспечение MEDYNA для моделирования движения систем твердых тел;
 - Программное обеспечение «Универсальный механизм» для моделирования движения систем твердых или деформируемых тел;
 - Программное обеспечение для моделирования прочности методом конечных элементов ANSYS.
 - 8.3. Обучающимся обеспечен доступ (удаленный доступ) к современным профессиональным базам данных:
 - Электронно-библиотечная система издательства «Лань».
 [Электронный ресурс]. URL: https://e.lanbook.com/ Режим доступа: для авториз. пользователей;
 - Электронно-библиотечная система ibooks.ru («Айбукс»). URL:
 https://ibooks.ru/ Режим доступа: для авториз. пользователей;
 - Электронная библиотека ЮРАЙТ. URL: https://urait.ru/— Режим доступа: для авториз. пользователей;
 - Единое окно доступа к образовательным ресурсам каталог образовательных интернет-ресурсов и полнотекстовой электронной учебно-методической библиотеке для общего и профессионального образования».
 URL: http://window.edu.ru/ Режим доступа: свободный.
 - Словари и энциклопедии. URL: http://academic.ru/ Режим доступа: свободный.
 - Научная электронная библиотека "КиберЛенинка" это научная электронная библиотека, построенная на парадигме открытой науки (Open Science), основными задачами которой является популяризация

- науки и научной деятельности, общественный контроль качества научных публикаций, развитие междисциплинарных исследований, современного института научной рецензии и повышение цитируемости российской науки. URL: http://cyberleninka.ru/ Режим доступа: свободный.
- 8.4. Обучающимся обеспечен доступ (удаленный доступ) к информационным справочным системам:
 - Национальный Открытый Университет "ИНТУИТ". Бесплатное образование. [Электронный ресурс]. URL: https://intuit.ru/ Режим доступа: свободный.
- 8.5. Перечень печатных изданий, используемых в образовательном процессе:
 - 1. Огородникова О.М. Расчет конструкций в ANSYS. Сборник учебных пособий. Техноцентр компьютерного инжиниринга, 2009. 452 с.
 - 2. Трушин С.И. Метод конечных элементов. Теория и задачи: Учебное пособие. Издательство АСВ, М.:, 2008. 256 с.
 - 3. Игнатьев В.А., Галишников В.В. Основы строительной механики. Издательство АСВ, М.:, 2009. 560 с.
 - 4. Орлова А.М., Лесничий В.С., Рудакова Е.А., Комарова А.Н., Саидова А.В. Требования к динамическим качествам грузовых вагонов и методы их подтверждения: Учебное пособие. СПб.: Петербургский гос. ун-т путей сообщения, 2014. 37 с.
 - 5. Лукин В.В., Анисимов П.С., Котуранов В.Н. и др. Конструирование и расчет вагонов: учебник. М.: ФГОУ «УМЦ ЖДТ». 2011.-688 с.
 - 6. Филин А.П. Прикладная механика твердого деформируемого тела, т I, Главная редакция физико-математической литературы изд-ва «Наука», 1975.-832 с.
 - 7. Феодосьев В.И. Сопротивление материалов, Главная редакция физико-математической литературы изд-ва «Наука», 1974. 560 с.
 - 8. Вершинский С.В., Данилов В.Н., Хусидов В.Д. Динамика вагонов. М.: Транспорт, 1991, 360 с.
 - 9. Котуранов В.Н., Хусидов В.Д., Быков А.И., Устич П.А. Нагруженность элементов конструкций вагонов. М.: Транспорт, 1991, 240 с.
 - 10. Лазарян В. А. Динамика вагонов. Устойчивость движения и колебания. М.: Транспорт, 1964.
 - 11. Вериго М. Ф., Коган А. Я. Взаимодействие пути и подвижного состава. М.: Транспорт, 1986.
 - 12. Лесничий В.С., Орлова А.М. Компьютерное моделирование задач динамики железнодорожного подвижного состава. Ч. 2: Моделирование динамики пассажирских вагонов в программном комплексе MEDYNA: Учебное пособие. –С.-Пб.: ПГУПС, 2002. 37 с.
 - 13. Лесничий В.С., Орлова А.М. Компьютерное моделирование задач динамики железнодорожного подвижного состава. Ч. 3: Моделирование

динамики грузовых вагонов в программном комплексе MEDYNA: Учебное пособие. –С.-Пб.: ПГУПС, 2002. - 35 с.

- 14. Бороненко Ю.П. Проектирование ходовых частей вагонов. Ч. 1: Проектирование рессорного подвешивания двухосных тележек грузовых вагонов: Учебное пособие / Бороненко Ю.П., Орлова А.М., Рудакова Е.А. СПб.: ПГУПС, 2003. 74 с. (Рекомендовано УМО, протокол №2 от 1-2.07.2003).
- 15. Лесничий В.С., Орлова А.М. Компьютерное моделирование задач динамики железнодорожного подвижного состава. Ч. 1: Основы моделирования в программном комплексе MEDYNA: Учеб. пособие; МПС РФ, ПГУПС. Санкт-Петербург, 2001. 32 с.
- 16. Перечень нормативно-правовой документации, необходимой для освоения дисциплины
- 17. ГОСТ 33211-2014 «Вагоны грузовые. Требования к прочности и динамическим качествам». М.: ВНИИЖТ, 2014. 92 с.
- 18. ГОСТ 33788-2016 «Вагоны грузовые и пассажирские. Методы испытаний на прочность и динамические качества». М.: ВНИИЖТ, 2014. –78 с.
- 19. «Нормы расчета и проектирования вагонов железных дорог МПС колеи 1520 мм (несамоходных) с изменениями и дополнениями 2000 и 2002 г.», ГосНИИВ-ВНИИЖТ, Москва, 1996.
- 8.6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», используемых в образовательном процессе:
 - 1. Личный кабинет обучающегося и электронная информационнообразовательная среда. [Электронный ресурс]. — Режим доступа: http://sdo.pgups.ru/ (для доступа к полнотекстовым документам требуется авторизация).
 - 2. Федеральное агентство по техническому регулированию и метрологии (РОССТАНДАРТ). Официальный сайт [Электронный ресурс]. Режим доступа: www.gost.ru/wps/portal, свободный. Загл. с экрана;
 - 3. Электронный фонд правовой и нормативно-технической документации URL: http://docs.cntd.ru/ Режим доступа: свободный.

Разработчик программы	
старший преподаватель	
кафедры «Вагоны и	
вагонное хозяйство»	И.В. Федорог
«12» апреля 2023 г.	_