ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП.04. ТЕОРИЯ ЭЛЕКТРОСВЯЗИ

для специальности

11.02.06 Техническая эксплуатация транспортного радиоэлектронного оборудования (по видам транспорта)

ДИФФЕРЕНЦИРОВАННОЙ ЗАЧЕТ

(3 семестр)

1. Перечень вопросов и заданий для проведения экзамена Теоретические вопросы

- 1. Дайте определение термина «сигнал». В какой форме может быть представлен сигнал? Приведите примеры.
- 2. Как рассчитывается количество информации, в каких единицах измеряется? Приведите пример простого сигнала и дайте его характеристику
- 3. Дайте определение канала связи. Приведите примеры импульсных сигналов. Покажите на графике параметры.
- 4. Дайте определение линии связи. Приведите примеры. Какой сигнал называется детермированным? Приведите примеры.
- 5. Что понимается под информацией в технике связи? Приведите временную диаграмму прямоугольного сигнала и покажите его параметры.
- 6. Дайте определение системы связи. Приведите примеры импульсных сигналов. Покажите на графике параметры.
- 7. Дайте определение системы связи. Перечислите системы связи. Приведите пример гармонического сигнала и покажите на графике его параметры.
- 8. Дайте характеристику телеграфного сигнала. Укажите на графиках параметры. В каком виде может быть представлено сообщение?
- 9. Что называется объемом сигнала, объемом канала.? Приведите примеры случайных сигналов.
- 10. Дайте определение термина «сообщение». В каком виде может быть передано сообщение? Как сообщение передать по каналу связи?
- 11. В каком соотношении должны быть объем сигнала и объем канала для передачи неискаженных сообщений? Приведите пример периодического сигнала и покажите на графике параметры
- 12. Дайте характеристику цифрового сигнала. Каков спектр телевизионного сигнала?
- 13. Дайте определение длинной линии. Нарисуйте эквивалентную схему замещения. Приведите общие сведения.
- 14. Дайте понятие первичного параметра «емкость длинной линии». Приведите расчетные формулы.
- 15. Как рассчитать коэффициент фазы? Поясните, как он зависит от первичных параметров.
- 16. Приведите классификация длинных линий. Дайте их краткую характеристику.
- 17. Как рассчитать волновое сопротивление? Поясните, как оно зависит от первичных параметров.
- 18. Дайте понятие первичного параметра «активное сопротивление длинной линии». Приведите расчетные формулы.
- 19. Как рассчитать коэффициент распространения? Поясните, как он зависит от первичных параметров.
- 20. Дайте определение однородной линии. Перечислите вторичные параметры длинных линий.

- 21. Нарисуйте эквивалентную схему замещения длинной линии без потерь. Каким уравнением описывается бегущая волна напряжения и тока в линии без потерь.
- 22. Дайте понятие первичного параметра «индуктивность длинной линии». Приведите расчетные формулы.
- 23. Как рассчитать коэффициент затухания? Поясните, как оно зависит от первичных параметров.
- 24. Нарисуйте эквивалентную схему замещения длинной линии с потерями. Каким уравнением описывается бегущая волна напряжения и тока линии с потерями.
- 25. Дайте определение волновода.
- 26. Перечислите преимущества ВОЛС
- 27. Дайте понятие числовой апертуры. На рисунке покажите, что является апертурным углом.
- 28. Приведите классификацию волн в волноводах.
- 29. Нарисуйте структурную схему волоконно- оптической системы передачи (ВОСП). Перечислите ее элементы .
- 30. Дайте определение числовой апертуры.
- 31. Нарисуйте схему волновода. Перечислите условия распространения волн в волноводах
- 32. Как применяются волоконно- оптические линии связи (ВОЛС).
- 33. Дайте понятие дисперсии сигнала.
- 34. Для чего используются волноводы?
- 35. Нарисуйте световод. Перечислите, какие типы волн распространяются в световоде.
- 36. Дайте определение дисперсии сигнала. Покажите на рисунке.
- 37. Для чего применяются автогенераторы?
- 38. Нарисуйте структурную схему RC автогенератора. Поясните принцип работы.
- 39. Дайте понятие балланса фаз.
- 40. Нарисуйте структурную схему LC автогенератора. Поясните принцип работы.
- 41. Что называется переходным режимом автогенератора? Поясните на рисунке.
- 42. Для чего применяется отрицательная обратная связь (OOC) в RC генераторе.
- 43. Какие дестабилизирующие факторы возникают при генерировании колебаний? Перечислите.
- 44. Нарисуйте эквивалентную схему кварцевого резонатора. Поясните принцип работы.
- 45. Дайте понятие баланса амплитуд.
- 46. Нарисуйте структурную схему автогенератора. Перечислите условия самовозбуждения генератора.
- 47. Какие режимы работы генератора существуют. Покажите на графике.
- 48. Какие существуют способы повышения стабилизации частоты?
- 49. Для чего применяется умножение частоты?
- 50. Нарисуйте структурную схему делителя частоты. Поясните работу схемы.
- 51. Что произойдет при воздействии на линейный элемент двумя электрическими колебаниями?
- 52. Дайте понятие угол отсечки тока. Покажите на рисунке.
- 53. Для чего применяется делитель частоты?
- 54. Чем отличаются линейные элементы от параметрических при воздействии на них электрическими сигналами.
- 55. Нарисуйте принципиальную схему умножителя частоты. Поясните работу схемы.
- 56. Нарисуйте структурную схему регенеративного делителя частоты. Поясните работу схемы
- 57. Дайте классификацию электрических цепей. Поясните принцип суперпозиции.
- 58. Дайте понятие оптимальный угол отсечки. Покажите на рисунке.
- 59. Поясните принцип умножения частоты на примере диодного умножителя

- 60. Чем отличаются линейные элементы от нелинейных при воздействии на них электрическими сигналами?
- 61. Приведите принцип амплитудной модуляции. Поясните на примере.
- 62. Нарисуйте схему балансного модулятора. Поясните работу схемы.
- 63. Дайте определение понятию: "боковая частота"
- 64. Дайте определение понятию: "модулирующий сигнал".
- 65. Нарисуйте схему диодного модулятора. Поясните работу схемы.
- 66. Приведите математическая модель амплитудно-модулированного (АМ) сигнала
- 67. Приведите временную и спектральную диаграммы амплитудно-модулированного (АМ) сигнала.
- 68. Дайте сравнительную характеристику однотактного и балансного АМ модуляторов
- 69. Поясните способы формирования сигнала однополосной передачи
- 70. Нарисуйте схему балансного кольцевого модулятора. Поясните работу схемы.
- 71. Дайте определение понятию: "несущая частота".
- 72. Какие основные виды преобразования частоты и спектра сигналов используются в электросвязи?
- 73. Поясните принцип частотной модуляции.
- 74. Поясните, как формируется частотно-модулированный (ЧМ) сигнал в частотном модуляторе.
- 75. Нарисуйте схему автогенератора на варикапе. Поясните работу схемы.
- 76. Поясните принцип работы частотного модулятора.
- 77. Дайте определение девиации частоты.
- 78. Поясните, как производится косвенный метод формирования частотномодулированного (ЧМ) сигнала. Нарисуйте схему.
- 79. Дайте определение частотной модуляции и поясните ее сущность.
- 80. Почему частотно-модулированные (ЧМ) сигналы называют сигналами с угловой модуляцией?
- 81. Нарисуйте схему автогенератора на варикапе. Поясните работу схемы.
- 82. Запишите математическое выражение, определяющее ЧМ сигнал при гармоническом модулирующем сигнале.
- 83. Дайте определение индекса частотной модуляции. Какое значение имеет индекс модуляции ?
- 84. Поясните, как производится комбинированным методом формирование частотномодулированного (ЧМ) сигнала. Нарисуйте схему.
- 85. Дайте определение ФМ сигнала. Запишите его математическое выражение.
- 86. Поясните, как производится косвенный метод формирования фазомодулированного (ФМ) сигнала. Нарисуйте схему.
- 87. Вычислите спектр ФМ сигнала, если индекс фазовой модуляции равен 100, максимальная частота модулирующего сигнала 5 КГц.
- 88. Почему ФМ сигналы называют сигналами с угловой модуляцией?
- 89. Поясните, как производится прямой метод формирования фазомодулированного (ФМ) сигнала. Нарисуйте схему.
- 90. Дайте определение девиации фазы.
- 91. В каком соотношении находятся индекс фазомодулированного (ФМ) сигнала и девиация фазы?
- 92. Приведите математическую модель фазомодулированного (ФМ) сигнала.
- 93. Поясните, как формируется фазомодулированный (ФМ) сигнал в фазовом модуляторе. Нарисуйте схему.
- 94. Поясните, как формируется фазомодулированный (ФМ) сигнал в фазовом модуляторе
- 95. Дайте определение девиации фазы.

96. Поясните прямой метод формирования фазомодулированного (ФМ) сигнала. Нарисуйте схему.

2. Комплекты оценочных материалов для проведения дифференцированного зачета Вариант №1

- **1.** Дайте определение термина «сигнал». В какой форме может быть представлен сигнал? Приведите примеры.
- 2. Дайте определение длинной линии. Нарисуйте эквивалентную схему замещения. Приведите общие сведения.
- 3. Перечислите преимущества ВОЛС
- 4. Что называется переходным режимом автогенератора? Поясните на рисунке.
- 5. Нарисуйте схему балансного кольцевого модулятора. Поясните работу схемы.
- 6. Поясните, как формируется фазомодулированный (ФМ) сигнал в фазовом модуляторе Вариант №2
- 1. Как рассчитывается количество информации, в каких единицах измеряется? Приведите пример простого сигнала и дайте его характеристику
- 2. Дайте понятие первичного параметра «емкость длинной линии». Приведите расчетные формулы.
- 3. Нарисуйте схему автогенератора на варикапе. Поясните работу схемы.
- 4. Дайте определение девиации фазы.
- 5. Дайте сравнительную характеристику однотактного и балансного АМ модуляторов
- 6. Для чего применяется делитель частоты?

Вариант №3

- 1. Нарисуйте схему волновода. Перечислите условия распространения волн в волноводах
- 2. Нарисуйте эквивалентную схему замещения длинной линии с потерями. Каким уравнением описывается бегущая волна напряжения и тока линии с потерями.
- 3. Запишите математическое выражение, определяющее ЧМ сигнал при гармоническом модулирующем сигнале.
- 4. Дайте определение линии связи. Приведите примеры. Какой сигнал называется детермированным? Приведите примеры.
- 5. Дайте определение понятию: "модулирующий сигнал".
- 6. Нарисуйте эквивалентную схему кварцевого резонатора. Поясните принцип работы.

Вариант №4

- 1. Что называется объемом сигнала, объемом канала.? Приведите примеры случайных сигналов
- 2. Как рассчитать коэффициент затухания? Поясните, как оно зависит от первичных параметров.
- 3. Для чего применяется умножение частоты?
- 4. Поясните способы формирования сигнала однополосной передачи
- 5. Какие основные виды преобразования частоты и спектра сигналов используются в электросвязи?
- 6. Поясните, как производится комбинированным методом формирование частотно-модулированного (ЧМ) сигнала. Нарисуйте схему.

Вариант №5

- 1. Дайте понятие числовой апертуры. На рисунке покажите, что является апертурным углом.
- 2. Нарисуйте принципиальную схему умножителя частоты. Поясните работу схемы.
- 3. Почему частотно-модулированные (ЧМ) сигналы называют сигналами с угловой модуляцией?
- 4. Что произойдет при воздействии на линейный элемент двумя электрическими колебаниями?
- 5. Приведите принцип амплитудной модуляции. Поясните на примере.

6. Поясните прямой метод формирования фазомодулированного (ФМ) сигнала. Нарисуйте схему.

Вариант №6

- 1. Нарисуйте структурную схему RC автогенератора. Поясните принцип работы.
- 2. Дайте определение системы связи. Перечислите системы связи. Приведите пример гармонического сигнала и покажите на графике его параметры.
- 3. Дайте понятие дисперсии сигнала.
- 4. Приведите математическую модель фазомодулированного (ФМ) сигнала.
- 5. Поясните принцип умножения частоты на примере диодного умножителя
- 6. Нарисуйте структурную схему автогенератора. Перечислите условия самовозбуждения генератора.

3. Критерии оценки.

- «5» «отлично» в работе дан полный, развернутый ответ на поставленные вопросы. Изложение знаний полное, системное в соответствии с требованиями учебной программы. Знание об объекте демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей. Ответ изложен литературным языком с использованием научной терминологии.
- «4» «хорошо» в работе дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки. Имеющиеся у обучающегося знания соответствуют минимальному объему содержания предметной подготовки. Изложение знаний полное, системное в соответствии с требованиями учебной программы. Возможны несущественные ошибки в формулировках. Ответ логичен, изложен литературным языком с использованием научной терминологии.
- «З» «удовлетворительно» дан недостаточно полный и недостаточно развернутый ответ. Допущены ошибки в раскрытии понятий, употреблении терминов. Ответ требует поправок, коррекции.
- «2» «неудовлетворительно» дан неполный ответ, представляющий собой разрозненные знания по теме вопроса с существенными ошибками в определениях. Изложение неграмотно, допущены существенные ошибки.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП.04. ТЕОРИЯ ЭЛЕКТРОСВЯЗИ

для специальности

11.02.06 Техническая эксплуатация транспортного радиоэлектронного оборудования (по видам транспорта)

Экзамен (4 семестр)

1.Перечень вопросов и заданий для проведения экзамена

Теоретические вопросы

- 1. Дайте определение термину "информация". Что называется "электрическим сигналом".
- 2. Какие устройства входят в систему передачи информации.
- 3. Какова роль передачи информации для государства.
- 4.Объясните на примере, в какой форме необходимо представить информацию, чтобы для ее передачи можно было применять устройства связи.
- 5. Единицы измерения информации и скорости передачи сообщений.
- 6. Перечислите цепи с распределенными параметрами, виды конструкций, эквивалентная схема (схема замещения), применение.
- 7.Поясните рисунком образование бегущих волн в бесконечно длинной линии без потерь и с потерями. Физические процессы при бегущих волнах.
- 8.Стоячие волны в разомкнутой линии, образование стоячих волн. Входное сопротивление в короткозамкнутой линии. Поясните на рисунке.
- 9.Стоячие волны в короткозамкнутой линии, образование стоячих волн. Входное сопротивление в короткозамкнутой линии. Поясните на рисунке.
- 10.Смешанные волны в линии, распределение амплитуды напряжения и тока в линии при R>Z_в и при R<Z_в. Покажите на рисунке.
- 11. Дайте определение коэффициентов бегущей и стоячей волны.
- 12. Определение и назначение волновода.
- 13. Приведите классификацию волн распространяющихся в волноводах.
- 14. Перечислите условия распространения волн в волноводах.
- 15. Как распространяются поверхностные и пространственные радиоволны в пространстве. Дайте понятие явлений замирания, молчания и радиоэха.
- 16. Как распространяются километровые радиоволны в пространстве.
- 17. Как распространяются гектометровые радиоволны в пространстве.
- 18. Как распространяются декаметровые радиоволны в пространстве.
- 19. Как распространяются метровые, сантиметровые, дециметровые и миллиметровые радиоволны в пространстве.
- 20.Симметричный вибратор: распространение тока по вибратору, характеристики и параметры.
- 21. Перечислите применение вибраторов в технике связи.
- 22. Приведите назначение автогенераторов в технике связи.
- 23. Нарисуйте структурную схему LC автогенератора. Поясните принцип работы.
- 24. Перечислите условия самовозбуждения генератора.
- 25. Перечислите дестабилизирующие факторы при генерировании колебаний.
- 26. Перечислите способы повышения стабилизации частоты. Эквивалентная схема кварцевого резонатора.
- 27. Нарисуйте структурную схему RC автогенератора. Поясните принцип работы.

- 28.Поясните назначение умножения частоты. Дайте понятие угол отсечки тока. Оптимальный угол отсечки.
- 29. Нарисуйте принципиальную схему умножителя частоты. Поясните работу схемы. Как определяется частота настройки входного и выходного контуров.
- 30. Нарисуйте структурную схему делителя частоты. Поясните работу схемы. Его назначение
- 31. Нарисуйте структурную схему преобразователя частоты. Поясните работу схемы. Его назначение
- 32.Поясните сущность преобразования частоты. Приведите спектры, иллюстрирующие преобразование частоты АМ сигнала.
- 33. Нарисуйте структурную схему параметрического преобразователя частоты. Поясните работу схемы. Его назначение
- 34. Поясните на рисунке принцип амплитудной модуляции.
- 35. Дайте определение понятиям: "модулирующий сигнал", "несущая частота", "боковая частота".
- 36. Приведите временные и спектральные диаграммы амплитудно-модулированного (АМ) сигнала.
- 37. Нарисуйте схему амплитудного балансного кольцевого модулятора. Поясните работу схемы.
- 38.Поясните принцип демодуляции амплитудно-модулированного (АМ) сигнала. Приведите рисунки.
- 39. Поясните принцип частотной модуляции. Приведите временные диаграммы.
- 40. Как определить ширину спектра частотно-модулированного (ЧМ) сигнала. Поясните.
- 41. Поясните принцип фазовой модуляции. Приведите временные диаграммы.
- 42.Как происходит детектирование фазо-модулированных (ΦM) и частотно-модулированных
- (ЧМ) сигналов. Приведите временные диаграммы..
- 43.Перечислите виды цифровой модуляции. Раскройте способы получения и их особенности. Приведите временные диаграммы.
- 44. Перечислите виды импульсной модуляции. Нарисуйте временные диаграммы.
- 45.Как происходит дискретная модуляция гармонической несущей. Нарисуйте временные диаграммы.
- 46. Дайте характеристику импульсно-кодовой модуляции (ИКМ). Перечислите ее особенности. Приведите временные диаграммы.
- 47. Дайте характеристику дельта модуляции (ДМ). Перечислите ее особенности. Приведите временные диаграммы.
- 48. Приведите область применения цифровой модуляции.
- 49. Приведите классификацию искажений и помех в технике связи.
- 50.Перечислите внутренние и внешние помехи в каналах связи.
- 51. Дайте понятие о помехозащищенности.
- 52. Объясните сущность влияния между проводами ВЛС. Покажите на рисунке.
- 53. Дайте понятие помехоустойчивости при различных видах модуляции.
- 54. Приведите общие сведения о цифровых фильтрах
- 55.Перечислите достоинства цифровых фильтров
- 56. Нарисуйте схемы. Поясните принципы работы цифровых фильтров
- 57. Простые цифровые фильтры. Понятие . Определение. Структурные схемы.
- 58.Дайте определение коэффициентов цифровых фильтров.
- 59. Перечислите радиотехнические параметры антенны
- 60. Перечислите электродинамические параметры антенны
- 61. Приведите классификацию антенн
- 62. Нарисуйте структурную схему радиопередатчика. Поясните работу схемы.
- 63. Перечислите основные технические характеристики радиопередатчика

- 64. Нарисуйте структурную схему радиоприёмника. Поясните работу схемы.
- 65. Дайте понятие побочных каналов приёма в супергетеродинных приёмниках. Поясните на рисунке.
- 66. Перечислите характеристики качества каналов и трактов связи
- 67. Перечислите преимущества волоконно-оптических линий связи (ВОЛС)
- 68. Перечислите элементы волоконно-оптических линий связи (ВОЛС)
- 69. Как происходит распространение лучей в градиентном световоде. Поясните на рисунке.
- 70. Как происходит распространение лучей в ступенчатом световоде. Поясните на рисунке.
- 71. Числовая апертура, понятие и определение.
- 72. Перечислите основные параметры волокна
- 73. Дисперсия сигнала, понятие и определение
- 74. Перечислите типы волн распространяющиеся в световоде.
- 75. Перечислите где и как применяются волоконно-оптические линии связи (ВОЛС).
- 76. Напишите основные уравнения радиосвязи. Поясните на рисунке составляющие этих уравнений.

3. Комплекты оценочных материалов для проведения экзамена Вариант 1

Залание 1.

Дайте определение термину "информация". Что называется "электрическим сигналом".

Задание 2.

Перечислите типы волн распространяющиеся в световоде.

Задание 3.

Поясните принцип частотной модуляции. Приведите временные диаграммы.

Вариант 2

Задание 1.

Перечислите, какие устройства входят в систему передачи информации.

Задание 2.

Перечислите внутренние и внешние помехи в каналах связи.

Задание 3.

Как определить ширину спектра частотно-модулированного (ЧМ) сигнала. Поясните.

Вариант 3

Задание 1.

Какова роль передачи информации для государства.

Залание 2.

Дайте понятие помехоустойчивости при различных видах модуляции.

Задание 3.

Поясните принцип фазовой модуляции. Приведите временные диаграммы.

Вариант 4

Задание 1.

Объясните на примере, в какой форме необходимо представить информацию, чтобы для ее передачи можно было применять устройства связи.

Задание 2.

Перечислите радиотехнические параметры антенны

Залание 3.

Как происходит детектирование фазомодулированных (ФМ) и частотномодулированных (ЧМ) сигналов. Приведите временные диаграммы.

Вариант 5

Задание 1.

Единицы измерения информации и скорости передачи сообщений.

Задание 2.

Числовая апертура, понятие и определение.

Задание 3.

Перечислите виды цифровой модуляции. Раскройте способы получения и их особенности. Приведите временные диаграммы.

Вариант 6

Задание 1

Перечислите цепи с распределенными параметрами, виды конструкций, эквивалентная схема (схема замещения), применение.

Задание 2.

Перечислите преимущества волоконно-оптических линий связи (ВОЛС)

Задание 3.

Перечислите виды импульсной модуляции. Нарисуйте временные диаграммы.

Вариант 7

Задание 1.

Образование бегущих волн в бесконечно длинной линии без потерь и с потерями. Физические процессы при бегущих волнах.

Задание 2.

Напишите основные уравнения радиосвязи. Поясните на рисунке составляющие этих уравнений.

Задание 3.

Как происходит дискретная модуляция гармонической несущей. Нарисуйте временные диаграммы.

Вариант 8

Задание 1.

Стоячие волны в разомкнутой линии, образование стоячих волн. Входное сопротивление в короткозамкнутой линии.

Задание 2.

Дисперсия сигнала, понятие и определение

Задание 3.

Дайте характеристику импульсно-кодовой модуляции (ИКМ). Перечислите ее особенности. Приведите временные диаграммы.

Вариант 9

Задание 1.

Стоячие волны в короткозамкнутой линии, образование стоячих волн. Входное сопротивление в короткозамкнутой линии.

Задание 2.

Перечислите основные параметры волокна

Задание 3.

Дайте характеристику дельта модуляции (ДМ). Перечислите ее особенности. Приведите временные диаграммы.

Вариант 10

Задание 1.

Приведите область применения цифровой модуляции.

Задание 2.

Перечислите основные технические характеристики радиопередатчика

Залание 3.

Смешанные волны в линии, распределение амплитуды напряжения и тока в линии при R>Zв и при R<Zв. Покажите на рисунке.

Вариант 11

Задание 1.

Дайте определение коэффициентов бегущей и стоячей волны.

Задание 2.

Перечислите дестабилизирующие факторы при генерировании колебаний.

Задание 3.

Поясните на рисунке образование бегущих волн в бесконечно длинной линии без потерь и с потерями. Физические процессы при бегущих волнах.

Вариант 12

Задание 1.

Перечислите внутренние и внешние помехи в каналах связи.

Задание 2.

Перечислите применение вибраторов в технике связи.

Задание 3.

Стоячие волны в короткозамкнутой линии, образование стоячих волн. Входное сопротивление в короткозамкнутой линии. Поясните на рисунке.

Вариант 13

Задание 1.

Приведите классификацию волн распространяющихся в волноводах.

Задание 2.

Поясните на рисунке принцип амплитудной модуляции.

Задание 3.

Нарисуйте структурную схему параметрического преобразователя частоты. Поясните работу схемы. Его назначение.

Вариант 14

Задание 1.

Перечислите условия распространения волн в волноводах.

Задание 2.

Как определить ширину спектра частотно-модулированного (ЧМ) сигнала. Поясните.

Задание 3.

Объясните сущность влияния между проводами ВЛС. Покажите на рисунке.

Вариант 15

Задание 1.

Приведите общие сведения о цифровых фильтрах

Задание 2.

Приведите классификацию искажений и помех в технике связи.

Задание 3.

Как распространяются поверхностные и пространственные радиоволны в пространстве. Дайте понятие явлений замирания, молчания и радиоэха. Поясните на рисунке.

Вариант 16

Задание 1.

Перечислите достоинства цифровых фильтров

Задание 2.

Объясните сущность влияния между проводами ВЛС. Покажите на рисунке.

Задание 3.

Как распространяются километровые радиоволны в пространстве. Поясните рисунком.

Вариант 17

Задание 1.

Простые цифровые фильтры. Понятие. Определение. Структурные схемы.

Задание 2.

Перечислите виды импульсной модуляции. Нарисуйте временные диаграммы.

Запание 3

Как распространяются гектометровые радиоволны в пространстве. Поясните рисунком.

Вариант 18

Задание 1.

Дайте определение коэффициентов цифровых фильтров.

Залание 2.

Перечислите где и как применяются волоконно-оптические линии связи (ВОЛС).

Задание 3.

Как распространяются декаметровые радиоволны в пространстве. Поясните рисунком.

Вариант 19

Задание 1.

Перечислите радиотехнические параметры антенны

Залание 2.

Перечислите типы волн распространяющиеся в световоде.

Задание 3.

Как распространяются метровые, сантиметровые, дециметровые и миллиметровые радиоволны в пространстве. Поясните на рисунке.

Вариант 20

Задание 1.

Симметричный вибратор: распространение тока по вибратору, характеристики и параметры.

Задание 2.

Перечислите основные параметры волокна

Задание 3.

Поясните сущность преобразования частоты. Приведите спектры, иллюстрирующие преобразование частоты АМ сигнала.

Вариант 21

Залание 1.

Приведите классификацию антенн

Задание 2.

Перечислите основные технические характеристики радиопередатчика

Задание 3.

Нарисуйте структурную схему LC автогенератора. Поясните принцип работы.

Вариант 22

Задание 1.

Приведите назначение автогенераторов в технике связи.

Задание 2.

Перечислите преимущества волоконно-оптических линий связи (ВОЛС)

Задание 3.

Нарисуйте структурную схему радиопередатчика. Поясните работу схемы.

Вариант 23

Задание 1.

Перечислите основные технические характеристики радиопередатчика

Задание 2.

Числовая апертура, понятие и определение.

Задание 3.

Перечислите способы повышения стабилизации частоты. Нарисуйте эквивалентную схема кварцевого резонатора.

Вариант 24

Задание 1.

Перечислите дестабилизирующие факторы при генерировании колебаний.

Задание 2.

Приведите классификацию антенн

Задание 3.

Нарисуйте структурную схему радиоприёмника. Поясните работу схемы.

Вариант 25

Задание 1.

Перечислите условия самовозбуждения генератора.

Задание 2.

Перечислите достоинства цифровых фильтров

Задание 3.

Дайте понятие побочных каналов приёма в супергетеродинных приёмниках. Поясните на рисунке

Вариант 26

Залание 1.

Приведите классификацию волн распространяющихся в волноводах.

Задание 2.

Приведите классификацию искажений и помех в технике связи.

Задание 3.

Нарисуйте структурную схему RC автогенератора. Поясните принцип работы.

Вариант 27

Задание 1.

Перечислите характеристики качества каналов и трактов связи

Задание 2.

Дайте определение понятиям: "модулирующий сигнал", "несущая частота", "боковая частота".

Залание 3.

Поясните назначение умножения частоты. Поясните рисунком понятие угол отсечки тока. Оптимальный угол отсечки.

Вариант 28

Задание 1

Перечислите элементы волоконно-оптических линий связи (ВОЛС)

Задание 2.

Перечислите дестабилизирующие факторы при генерировании колебаний.

Задание 3.

Нарисуйте структурную схему делителя частоты. Поясните работу схемы. Его назначение.

Вариант 29

Задание 1.

Перечислите преимущества волоконно-оптических линий связи (ВОЛС)

Задание 2.

Определение и назначение волновода.

Задание 3.

Нарисуйте структурную схему преобразователя частоты. Поясните работу схемы. Его назначение

Вариант 30

Вопрос 1

Перечислите электродинамические параметры антенны

Вопрос 2.

Приведите назначение автогенераторов в технике связи.

Практическое задание 1.

Как происходит распространение лучей в градиентном световоде. Поясните на рисунке.

Вариант 31

Задание 1.

Дайте понятие о помехозащищенности.

Запание 2

Перечислите цепи с распределенными параметрами, виды конструкций, эквивалентная схема (схема замещения), применение.

Задание 3.

Как происходит распространение лучей в ступенчатом световоде. Поясните на рисунке.

Вариант 32

Задание 1.

Дисперсия сигнала, понятие и определение

Задание 2.

Единицы измерения информации и скорости передачи сообщений.

Задание 3.

Приведите временные и спектральные диаграммы амплитудно-модулированного (АМ) сигнала.

Вариант 33

Задание 1.

Перечислите где и как применяются волоконно-оптические линии связи (ВОЛС).

Залание 2.

Какие устройства входят в систему передачи информации.

Задание 3.

Поясните принцип демодуляции амплитудно-модулированного (АМ) сигнала. Нарисуйте схему амплитудного диодного детектора.

Вариант 34

Задание 1.

Перечислите типы волн распространяющиеся в световоде.

Залание 2.

Дайте определение термину "информация". Что называется "электрическим сигналом".

Задание 3.

Нарисуйте схему амплитудного балансного кольцевого модулятора. Поясните работу схемы.

3. Критерии оценки.

Оценка «**5**» «**отлично**» - обучающийся показывает полные и глубокие знания программного материала, логично и аргументировано отвечает на поставленный вопрос, а также дополнительные вопросы, показывает высокий уровень теоретических знаний.

Оценка «**4**» «**хорошо**» - обучающийся показывает глубокие знания программного материала, грамотно его излагает, достаточно полно отвечает на поставленный вопрос и дополнительные вопросы, умело формулирует выводы. В тоже время при ответе допускает несущественные погрешности.

Оценка «3» «удовлетворительно» - обучающийся показывает достаточные, но не глубокие знания программного материала; при ответе не допускает грубых ошибок или противоречий, однако в формулировании ответа отсутствует должная связь между анализом, аргументацией и выводами. Для получения правильного ответа требуется уточняющие вопросы.

Оценка «2» «неудовлетворительно» - Дан неполный ответ, представляющий собой разрозненные знания по теме вопроса с существенными ошибками.